
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, Sep. 2020 3841
Copyright ⓒ 2020 KSII

http://doi.org/10.3837/tiis.2020.09.015 ISSN : 1976-7277

The new Weakness of RSA and The
Algorithm to Solve this Problem

Kritsanapong Somsuk*
Department of Computer and Communication Engineering, Faculty of Technology,

Udon Thani Rajabhat University, UDRU,
Udon Thani, Thailand

kritsanapong@udru.ac.th
*Corresponding author: Kritsanapong Somsuk

Received February 24, 2020; revised June 19, 2020; accepted August 1, 2020;

 published September 30, 2020

Abstract

RSA is one of the best well-known public key cryptosystems. This methodology is widely
used at present because there is not any algorithm which can break this system that has all
strong parameters within polynomial time. However, it may be easily broken when at least one
parameter is weak. In fact, many weak parameters are already found and are solved by some
algorithms. Some examples of weak parameters consist of a small private key, a large private
key, a small prime factor and a small result of the difference between two prime factors. In this
paper, the new weakness of RSA is proposed. Assuming Euler’s totient value, Φ (n), can be
rewritten as Φ (n) = ad + b, where d is the private key and ,a b∈ , if a divides both of Φ (n)
and b and the new exponent for the decryption equation is a small integer, this condition is
assigned as the new weakness for breaking RSA. Firstly, the specific algorithm which is
created for this weakness directly is proposed. Secondly, two equations are presented to find a,
b and d. In fact, one of two equations must be implemented to find a and b at first. After that,
the other equation is chosen to find d. The experimental results show that if this weakness has
happened and the new exponent is small, original plaintext, m, will be recovered very fast.
Furthermore, number of steps to recover d are very small when a is large. However, if a is too
large, d may not be recovered because m which must be always written as m = ha is higher than
modulus.

Keywords: RSA, Weak Parameter, Private Key, Euler’s totient value

3842 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

1. Introduction

Cryptography [1] is the significant technique to secure the secret information by using
encryption and decryption processes. It falls into two groups. The first group is called
symmetric key cryptography. It uses the same key which is called the secret key to encrypt
original plaintext and decrypt the ciphertext. The advantage is about time to finish processes
in both sides. Moreover, low computational cost is required. Advanced Encryption Standard
(AES) [2], [3] is the best algorithm. However, the disadvantage of all algorithms in this
group is the problem to find the secret channels to exchange the secret key between sender
and receiver. Later, the other technique which is different from the first group was proposed.
Asymmetric key cryptography or public key cryptography is the name of this technique. In
fact, a pair of keys is selected for encryption and decryption processes, both keys are called
public key and private key. In depth, a public key is always disclosed to interlocutors. On the
other hand, a private key must be kept secretly by owner. The first algorithm which was born
in 1976 was discovered by W. Diffie and M.E. Hellman [4]. Although, Diffie and Hellman’ s
method cannot be chosen to secure the information, it is selected as the secret way to
exchange a secret key which is transmitted via the insecure channel. In 1978, RSA [5], [6]
which is another public key cryptography was proposed. It is different from Diffie and
Hellman’s algorithm because RSA can secure many types of information such as text and
image [7], [8] by using encryption and decryption processes. In general, at least 1024 bits of
modulus must be selected to avoid an attack by intruders. Although RSA is one of the best
algorithms in this group, it may be easily broken whenever at least one hidden parameter is
weak. For examples, in 1990, M. Wiener [9], [10] presented the method to recover a private
key by using continued fractions. This algorithm has very high performance when a private

key is very small especially a key which is less than
0.251

3
n , where n is modulus. Later, D.

Boneh and G. Durfee [11] improved Wiener’s technique. In that time, they showed that the
modified technique is still efficient to recover a private key, although it is bigger than

0.251

3
n . However, their method becomes incapable when a private key is larger than n0.292. In

addition, brute force attack is suitable for a small private key, because the initial value for the
investigation is the smallest odd integer. Furthermore, factoring [12] the modulus as prime
numbers is another methodology to find a private key, because Euler’s totient value is
disclosed. Most of algorithms can finish the process very fast when the characteristic of
some prime factors is weak. In 2017, the technique [13] to speed up RSA’s decryption
process with a large private key was proposed by using the modified decryption equation.
The inversion of ciphertext modulo n is chosen as the base instead of the ciphertext and the
private key is replaced by the new integer. In fact, this method is suitable for only the large
private key, because the size of the new exponent is opposite of the private key. On the other
hand, this technique may be chosen to attack RSA by using brute force attack whenever a
private key is too large. It affects to the size of the new exponent which is too small.
Therefore, it is an easy way for intruders to break RSA by using the equation with the base
as inversion of ciphertext modulo n and the random exponent.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3843

 The aim of this paper is to propose the new idea to break RSA. Furthermore, the weak

parameter for this method occurs when a private key, d, can be rewritten as
()n b

a

Φ −
, where

, Φ (n) is Euler’s totient value, a divides b (a|b) and a divides Φ (n) (a|Φ (n)). In
fact, if d is from the above condition, a and b are easily disclosed. In contrast, d will not be
discovered by using the proposed method in the case that it cannot be written as this form.

The rest of the paper is organized as follows. In section 2, the related works are mentioned.
It consists of the overview of RSA and the techniques to recover d. The proposed method will
be discussed in Section 3. In section 4, the experimental results are presented. Finally, the last
section is about the conclusion of this research.

2. Related Work
 In this section, the conceptual idea of RSA and the ways to recover d by intruders are
mentioned. In fact, all algorithms which are in the special proposed group may break RSA
in polynomial time when at least one parameter is weak.

2.1 RSA

 RSA [5], [6] is one of public key cryptosystems to protect the secret information by using
data encryption. Because of high security, when n is assigned at least 1024 bits, RSA is still
widely used at present. In general, there are three processes to secure the plaintext by using
RSA. First step is the key generation process. The beginning of this process is the generating
two large prime numbers, p and q (p < q), randomly. The second step is to compute n = p*q
and Φ (n) = (p – 1)*(q – 1). The next step is to choose a public key, e, from the following
condition: 1 < e < Φ (n) and the greatest common divisor between e and Φ (n) must be
equal to 1, gcd(e, Φ (n)) = 1. Computing d, from e*d mod Φ (n) = 1, is performed in the last
step. In fact, Extended Euclidean Algorithm or the improved methods [14], [15] are the
method to calculate d. The second process is the encryption process. It will convert the
original plaintext, m, as unreadable message or ciphertext, c, from the equation: c = me mod
n. However, m will be recovered by using the decryption equation: m = cd mod n in the last
process.
 In general, d which is always kept secretly by owner is the intruders’ target. However, there
is not any efficient algorithm to recover d for breaking RSA within the polynomial time
whenever at least 1024 bits of n is chosen and all secreted parameters are very difficult to be
calculated.
 On the other hand, RSA may be easily attacked when at least one of the parameters
becomes weak. In the sections 2.2 – 2.5, the algorithms for recovering d are shown when at
least one of hidden parameters which is weak is occured. All of them are suitable for the
different characteristics of the weak parameters.

2.2 Wiener’s attack

 Assuming, the communication devices in decryption part are a low power electronic
equipment, these divices are not suitable to be selected as the machine to decrypt the
ciphertext. The reason is that d is usually assigned very large. Therefore, one of the best
solutions is to choose the new private key that the size is smaller than the old one. However,

3844 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

in 1990, M. Wiener [9], [10] proposed the efficient method to recover a small private key.

His method has very high performance when d is smaller than
0.251

3
n . In fact, if this situation

is occured, it can be computed by searching
k

d
 which is the convergence of

e

n
. Moreover,

after d is disclosed, p and q are also found. Therefore, a small private key is considered as
one of the weak parameters. Furthermore, D. Boneh and G. Durfee [10] improved Wiener’s
algorithm and the result from the experiment reported that it can recover d, although d is still

larger than
0.251

3
n . In fact, to avoid an attack by using Boneh and Durfee’s method, d should

be larger than n0.292.

2.3 Brute force attack

 Brute force attack [16] is the simplest method to explore d. The main process is to find an
integer which is equal to d. In general, the first initial value which is selected as the exponent
of modular exponentiation is begun as 3 and it is increased by two whenever the result from
decryption equation is not equal to m until the target is found. In fact, the reason that the
exponent must be increased by two is to skip all even numbers out of the computation,
because d is always an odd number. Therefore, it implies that if d is a small integer, the
process can be finished very fast by using brute force attack.

2.4 High value of Private key

 After Wiener’s attack and some improved methods were proposed, d must be assigned
very large to increase the security. However, it affects to get the result directly, because the
process becomes slow. In 2017, the improvement of decryption equation [13] was proposed
to speed up RSA’s decryption process. Considering at the modified equation, the inversion
of ciphertext modulo n , c-1 mod n, is selected as the base instead of c and d is replaced by x =
Φ (n) – d. Therefore, the equation to recover m is changed as m = (c-1)x mod n. In fact, this
method is suitable for a high private key because x becomes small. Therefore, if d is a large
integer, m can be recovered very fast by using the above equation. In contrast, this equation
may become the weak point for attackers to solve this problem. Assuming, d is a large
integer, x becomes small, d can be found easily by using brute force attack with c-1 mod n as
the base. Therefore, the large private key may become one of the weak parameters.

2.5 Integer Factorization Algorithms

 Integer Factorization is another strategy to retrieve d after p and q are found. It is
distinguished as two groups. For the first group, it is called the general purposed group. All
algorithms are based on only size of n. Number Field Sieve (NFS) [17] which is one of
efficient algorithms in this group is considered as the best integer factorization algorithm. In
fact, it has very high performance when n is large. However, if n is higher than 1024 bits,
then NFS becomes an inefficient algorithm to find two prime factors. The second group is
called the special purposed group. In fact, the performance of each algorithm in this group is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3845

based on the different characteristics of the weak parameters. Although, NFS is considered
as the best algorithm, it is not guaranteed as the fastest algorithm for all values of n. In fact,
if there is at least one weak parameter that responds well to the algorithm in special purposed
group, then it may factor n faster than NFS. The examples of algorithms in special purposed
group are shown as follows:

1) Trial Division Algorithm
 Trial division algorithm (TDA) [18], [19] is the simplest integer factorization algorithm
and it is divided into two techniques. The concept of this algorithm is to find the correct
divisor of n. First, the divisor is begun as 3 and it is increased whenever the result is not the
target answer. In addition, only odd numbers or prime numbers are chosen as the divisor to
decrease time. With the reason above, it implies that this technique is suitable for a small
prime factor. Hence, it is considered as another weak point to break RSA. However, the

maximum odd integer which is less than n is chosen as the first divisor instead of 3 for the
second method [20]. In addition, this number will be decreased whenever it is not the real

prime factor. Then, p which is very close to n is the weak parameter for the second
method.

2) Pollard’s p-1
 Pollard’s p-1 [21] is one of the strategies in special purposed group. It was discovered by J.
Pollard in 1974. The main idea of this algorithm is improved from Fermat’s little theorem
[22]. In addition, this algorithm can recover both of p and q very fast whenever all prime
factors of p – 1 or q – 1 are small. In general, all of them are examined as the weak point of
Pollard’s p - 1.

3) Fermat’s Factorization
 Fermat’s Factorization algorithm (FFA) is the factoring algorithm which was discovered
by Pirre der Fermat in 1600 [21]. During that time, he found that the equation of n which is
the multiplication between p and q can be rewritten as the difference between two perfect
square numbers. In addition, the algorithm to recover both of them was proposed in that
time. In general, Fermat’s equation is very suitable for the same size of p and q especially the
result of q – p is very close to 0. Furthermore, many improvement algorithms were presented
to leave some unrelated loops out of the computation such as [24], [25].

4) VFactor
 VFactor [26] is the integer factorization algorithm that was presented by P. Sharma et. al. in
2012. It has very high performance when q – p is close to 0, the characteristics of p and q are
similar to FFA. That means, the weak point is that p and q are very close to each others. To
implement VFactor, two odd integers are chosen as the initial values. One is the maximum
integer which is less than n and the other is the minimum integer which is larger than n .
The main process is about the multiplication between these integers. If the result is equal to
n, both of them are certainly prime factors. On the other hand, one of them must be changed
until the target is found. In addition, the improvement of VFactor [27], [28] were proposed to
skip some loops to decrease computation time.
 Therefore, all algorithms which are in the special proposed group and are mentioned in this
section can recover d very fast when one of hidden parameters is weak.

3846 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

3. The Proposed Method
 In this paper, the new methodology to recover m without disclosing d and the new
algorithm to find d are proposed. Assuming Φ (n) = ad + b, where ,a b∈ , a | b and a

|Φ (n) , if a is not too large and the result of
b
a

 is a small integer, then both of them

become the new weakness of RSA which is very easy to be solved by using the proposed
method. Furthermore, after a and b are disclosed, they can be selected to estimate the new
initial value of d.

Theorem 1: Assigning , ,a b h∈ and Φ (n) = ad + b, where a | b and a | Φ (n), if m = ha,

then m can be recovered by using the following equation: m = 1()
b
ac− mod n

Proof:
 From, ()ncΦ mod n = cad + b mod n
 = (cd)a * cb mod n

From Euler’s Theorem, ()ncΦ mod n = 1, when c is relatively prime to n, then

 (cd)a * cb mod n = 1
 That means, (cd)a *c-1 *cb mod n = c-1 mod n
 Or, (cd)a *(c-1)b*cb mod n = (c-1)b mod n
 cda *c-b*cb mod n = (c-1)b mod n
 Because, c-b*cb mod n = 1
 Then, cda mod n = (c-1)b mod n

 Because m = ha, it implies that the result of
1

()ea ah is always an integer. Therefore,

1
ac mod n =

1

()e am mod n

 = ()
1

ae ah mod n
 = he mod n

Because a | b, the result of
b
a

is always an integer.

Therefore,

1

()ad ac mod n =
1

1(())b ac− mod n

Or, cd mod n = 1()
b
ac− mod n

Therefore,

 cd mod n = 1()
b
ac− mod n (1)

 In fact, a and b must have the same type, both of them are either odd numbers or even
numbers. The proof will be shown in theorem 2. Furthermore, a must be the divisor of
Φ (n). In depth, if it is not in the condition, there is certainly the remainder from result of d =

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3847

()n b
a

Φ −
that is impossible.

Theorem 2: a and b must be the same type, both of them are either odd numbers or even
numbers.
Proof: First, assuming the type of a is different from b, there are two cases as follows:

Case 1: a is an even number and b is an odd number
Assuming a = 2x, b = 2y + 1 and d = 2z + 1, then
 ad + b = (2x)*(2z + 1) + 2y + 1
 = 4xz + 2x + 2y + 1
 = 2(2xz + x + y) + 1
 = 2u + 1, where u = 2xz + x + y

 Then, ad + b is an odd number. However, Φ (n) is always an even number.
Therefore, it becomes the contradiction.

Case 2: a is an odd number and b is an even number
Assuming a = 2x + 1, b = 2y and d = 2z + 1, then
 ad + b = (2x + 1)*(2z + 1) + 2y
 = 4xz + 2x + 2z + 1 + 2y
 = 2(2xz + x + y + z) + 1
 = 2u + 1, where u = 2xz + x + y + z

The same reason with case 1 that Φ (n) is always an even number. Therefore, the

contradiction is occured.
 From case 1 and case 2, the conclusion is that the contradiction will be happened
whenever a and b are the different type.
 Next, the similar type of a and b is assummed, there are also two cases as follows:

Case 3: a and b are an odd number
Assuming a = 2x + 1, b = 2y + 1 and d = 2z + 1, then
 ad + b = (2x + 1)*(2z + 1) + 2y + 1
 = 4xz + 2x + 2z + 1 + 2y + 1
 = 2(2xz + x + y + z + 1)
 = 2u, where u = 2xz + x + y + z + 1

Case 4: a and b are an even number
Assuming a = 2x, b = 2y and d = 2z + 1, then
 ad + b = (2x)*(2z + 1) + 2y
 = 4xz + 2x + 2y
 = 2(2xz + x + y)
 = 2u, where u = 2xz + x + y

The information from case 3 and case 4 shows that the result of ad + b is always an

even number. Then, it is possible to be Φ (n). Therefore, both of a and b must be the same
type.

3848 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

Example 1: Assuming n = 4624614191 (46279*99929), Φ (n) = 4624467984, e =
1761702089 and d = 1541489321, encrypting m = 8 (23) , 27 (33) and 64 (43) and recovering
all of them.
Sol:
Encryption Process:
 Encrypting m1 = 8: c1 = 81761702089 mod 4624614191 = 4582115474
 Encrypting m2 = 27: c2 = 271761702089 mod 4624614191 = 4250185739
 Encrypting m3 = 64: c3 = 641761702089 mod 4624614191 = 2498965230
Decryption Process:
 Because of 4624467984 = 3*1541489321 + 21, 3 | 21 and 3 | 4624467984, then a =

3, b = 21 and the exponent is
21
3

= 7.

 Decrypting c1 = 4582115474: because of 4063456358 * 4582115474 mod
4624614191 = 1, then m1 = 40634563587 mod 4624614191= 8
 Decrypting c2 = 4250185739: because of 4038271146* 4250185739 mod
4624614191 = 1, then m2 = 40382711467 mod 4624614191= 27

Decrypting c3 = 2498965230: because of 3200318111* 2498965230 mod
4624614191 = 1, then m3 = 32003181117 mod 4624614191= 64

Example 2: Assuming n = 4624614191 (46279*99929), Φ (n) = 4624467984, e =
105101545 and d = 1156116985, encrypting m = 16 (24), 81 (34) and 256 (44) and recovering
all of them.
Sol:
Encryption Process:
 Encrypting m1 = 16: c1 = 16105101545 mod 4624614191 = 3695640335
 Encrypting m2 = 81: c2 = 81105101545 mod 4624614191 = 827143163
 Encrypting m3 = 256: c3 = 256 105101545 mod 4624614191 = 1504158843
Decryption Process:
 Because of 4624467984 = 4*1156116985 + 44, 4 | 44 and 4 | 4624467984, then a =

4, b = 44 and the exponent is
4

44
= 11.

 Decrypting c1 = 3695640335: because of 4330254396 * 3695640335 mod
4624614191 = 1, then m1 = 433025439611 mod 4624614191= 16
 Decrypting c2 = 827143163: because of 2428627615* 827143163 mod 4624614191
= 1, then m2 = 242862761511 mod 4624614191= 27

Decrypting c3 = 1504158843: because of 1756256207* 1504158843 mod
4624614191 = 1, then m3 = 175625620711 mod 4624614191= 256

 The information from example 1 and example 2 shows that the new equation in the
theorem 1 can be chosen to recover m. However, the correct result will be occurred
whenever m must be generated from ha. The example 3 shows that the result becomes an
incorrect answer when the pattern of m cannot be written as ha.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3849

Example 3: From n, Φ (n), e and d which are in example 1, encrypting m = 11 and
recovering this value.
Sol:
Encryption Process:
 Encrypting m = 11: c = 111761702089 mod 4624614191 = 4348997977
Decryption Process:

Decrypting c = 4348997977: because of 2334698442 * 4348997977 mod
4624614191 = 1, then m' = 23346984427 mod 4624614191= 182070649  it is the wrong
answer

 In fact, the decrytion process in example 3 cannot recover m = 11 because 11 cannot
be written as h3.
 Nevertheless, some values which are not written as the form ha can be recovered by
using the proposed equation, it is shown in example 4.

Example 4: From n, Φ (n), e and d which are in example 1, encrypting m = 15 and
recovering this value.
Sol:
Encryption Process:
 Encrypting m = 15: c = 151761702089 mod 4624614191 = 4542134671
Decryption Process:

Decrypting c = 4542134671: because of 1511425060 * 4542134671 mod
4624614191 = 1, then m = 15114250607 mod 4624614191= 15

 From the information in the examples above, it implies that if m = ha, it can be
always recovered by using the proposed equation. On the other hand, the result from
decryption process may be the wrong answer when m ≠ ha.

Assuming, the form of d is in the condition of this research, the concept to find i =
b
a

is as follows. First, it is the process to assign i = 1 as the initial exponent for the proposed

equation. The next process is to select m which is a small integer to find some possible
plaintexts which are generated from m. In fact, all of them are m, m2, m3, ,ma, ,ml where
ml < n < ml+1. Next, all chosen plaintexts are encrypted. The last process is to decrypt all
ciphertexts by using i as the key and the inversion of ciphertext modulo n as the base. If there

is the matching result, thoroughly rechecking with the other values to ensure that i =
b
a

. On

the other hand, i will be increased to find the correct key whenever there is no matching
result.

Example 5: Assuming n = 290831 (863*337), and e = 203815 are disclosed, find i,
Sol:

First, choosing m = 3
 Because m11 = 177147 < n < m12 = 531441, therefore, m1 = 3, m2 = 32, m3 = 33, ,
m11= 311 are chosen as the plaintexts for the implementation. The results are m1=3, m2=9,
m3=27, m4=81, m5=243, m6=729, m7=2187, m8=6561, m9=19683, m10=59049, m11=177147

3850 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

 The next process is to find c1 = 1
em mod n = 255559, c2 = 2

em mod n = 229797, c3 =

3
em mod n = 60186, c4 = 4

em mod n = 185708, c5 = 5
em mod n = 94037, c6 = 6

em mod n =

54491, c7 = 7
em mod n = 95527, c8 = 8

em mod n = 139622, c9 = 9
em mod n = 184970, c10 =

10
em mod n = 240814, c11 = 11

em mod n = 18778.

 Then computing 1
1c− mod n = 22749 , 1

2c− mod n = 128652, 1
3c− mod n = 71995,

1
4c− mod n = 144894, 1

5c− mod n = 205883, 1
6c− mod n = 89943, 1

7c− mod n = 117222, 1
8c− mod

n = 53839, 1
9c− mod n = 94070, 1

10c− mod n = 63932, 1
11c− mod n = 234068

 Assigning j ∈ where j = 1, 2, 3, , 11, the next process is to find the exponent i
which is the correct result, the initial value is 1,
Loop 1 (i = 1): Computing tj = 1 1()jc− mod n, that means tj = 1()jc− mod n, however there is
no tj which is matched to mj.
Loop 2 (i = 2): Computing tj = 1 2()jc− mod n, then the results are t1 = 128652, t2 = 144894, t3
= 89943, t4 = 53839, t5 = 63932, t6 = 278984, t7 = 105027, t8 = 216175, t9 = 50063, t10 =
252581, t11 = 212351, there is no tj which is matched to mj.
Loop 3 (i = 3): Computing tj = 1 3()jc− mod n, then the results are t1 = 71995, t2 = 89943, t3 =
94070, t4 = 278984, t5 = 82558, t6 = 50063, t7 = 17102, t8 = 170867, t9 = 27, t10 = 198879, t11
= 101813, there is no tj which is matched to mj.
Loop 4 (i = 4): Computing tj = 1 4()jc− mod n, then the results are t1 = 144894, t2 = 53839, t3
= 278984, t4 = 216175, t5 = 252581, t6 = 170867, t7 = 32561, t8 = 33052, t9 = 213242, t10 =
182570, t11 = 182313, there is no tj which is matched to mj.
Loop 5 (i = 5): Computing tj = 1 5()jc− mod n, then the results are t1 = 205883, t2 = 63932, t3
= 82558, t4 = 252581, t5 = 97068, t6 = 198879, t7 = 290329, t8 = 182570, t9 = 188377, t10 =
144717, t11 = 6654, there is no tj which is matched to mj.
Loop 6 (i = 6): Computing tj = 1 6()jc− mod n, then the results are t1 = 89943, t2 = 278984, t3
= 50063, t4 = 170867, t5 = 198879, t6 = 213242, t7 = 193249, t8 = 170923, t9 = 729, t10 =
131472, t11 = 88467, there is no tj which is matched to mj.
Loop 7 (i = 7): Computing tj = 1 7()jc− mod n, then the results are t1 = 117222, t2 = 105027, t3
= 17102, t4 = 32561, t5 = 290329, t6 = 193249, t7 = 207688, t8 = 139726, t9 = 231745, t10 =
252004, t11 = 126556, there is no tj which is matched to mj.
Loop 8 (i = 8): Computing tj = 1 8()jc− mod n, then the results are t1 = 53839, t2 = 216175, t3
= 170867, t4 = 33052, t5 = 182570, t6 = 170923, t7 = 139726, t8 = 73468, t9 = 142052, t10 =
245652, t11 = 118303, there is no tj which is matched to mj.
Loop 9 (i = 9): Computing tj = 1 9()jc− mod n, then the results are t1 = 94070, t2 = 50063, t3 =
27 = m3, t4 = 213242, t5 = 188377, t6 = 729 = m6, t7 = 231745, t8 = 142052, t9 = 19683 = m9,
t10 = 149664, t11 = 54601
 From all results in 9th Loop, the result of a may be equal to 3, 6 or 9. In fact, both of
m6 and m9 can be rewritten as the form h3 as follows: m6 = m3*m3 = (m2)3 and m9 = m3*m3*m3
= (m3)3. Therefore, it implies that a is equal to 3 and then b = 3*9 = 27. However, to ensure a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3851

= 3 is the correct result, the other plaintexts should be selected to verify.
 Assuming '

1m = 125 (53) and '
2m = 1331 (113) are chosen, then

Encryption Process:
 Encrypting '

1m = 125: '
1c = 125203815 mod 290831 = 194710

 Encrypting '
2m = 1331: '

2c = 1331203815 mod 290831 = 124812
Decryption Process:
 Decrypting '

1c = 194710: because 55503* 194710 mod 290831 = 1, then

 '
1m = 555039 mod 4624614191= 125

 Decrypting '
2c = 124812: because 181922* 124812 mod 290831 = 1, then

 '
2m = 1819229 mod 4624614191= 1331

 Therefore, i = 9 with a = 3, b = 27
 In addition, the total loops to find a and b are 11 (number of c-1 mod n) * 9 (number
of loops) = 99.

 Furthermore, if a and b are disclosed, the initial integer can be estimated to decrease
loops. After this integer is found, d can be recovered by using brute force attack.

Theorem 3: Assuming a, b are disclosed, then
2 (1)n n b

d
a

− − −
≤

  

Proof:
 From, ad + b = Φ (n)
 = (p – 1)(q – 1)
 = n – (p + q) +1

 Because, p + q 2 n ≥   ,

ad + b ≤ n - 2 n   +1

 ad ≤ 2 (1)n n b− − −  

 Then, d ≤
2 (1)n n b

a

− − −  

 Therefore, d ≤
2 (1)n n b

a

− − −  

 Therefore, the scope to find d is narrowed by using the following equation,

d ≤
2 (1)n n b

a

− − −   (2)

3852 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

Assigning di =
2 (1)n n b

a

− − −   , it can be chosen as the initial value to find d and

it is always decreased by two (d is always an odd number) whenever the decrypted result is
still incorrect.

Example 6: From the solution in example 5, the aim of this example is to find the initial
value by using the equation in theorem 3
Sol:

 From, di =
2 (1)n n b

a

− − −  

 =
290831 2908312 (27 1)

3

− − −  

 = 96575

 In fact, the real value of d = 96535. Then, the distance between di and d is only
96575 – 96535 = 40. Therefore, there are only 20 loops of the computation to find the target.
On the other hand, if the process is implemented by using traditional brute force attack
choosing do = 3 as the initial exponent, the loops are 48266. In depth, it is very higher than
the proposed equation.

4. Experimental Results
 The aim of this section is to ensure the hypothesis that the proposed method can recover

both of m and d very fast when a is large, but 2a is still less than n, and
b

a
 is small. Many

pairs of e and d from the same value of n are chosen for the experiment. However, all values
of d must generate a and b in the condition. In addition, 32 bits of n is chosen randomly. In
fact, n in this experiment is 2078092697 (55619 * 37363) and thenΦ (n) is 2077999716. In
addition, m = 2 is selected as the base of original plaintext because it is the smallest plaintext.
Because of 230 = 1073741824 < n < 231 = 2147483648, then the maximum value of a is 30.
Despites of 2077999716 = 22*3*13*479*27809. Therefore, there are 6 possible values of a
consist of 2, 3, 4 (2*2), 6 (2 * 3), 12 (2 * 2 * 3), 13 and 26 (2 *13).
 From Table 1, Number of steps to find a, b can be estimated from the following equation:

 tab = * bl
a

 (3)

Where, tab is represented as number of steps to find a, b

 l is number of all possible plaintexts which are from m = m1, m2, , ml.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3853

Table 1. Number of steps to find a, b and d when n = 2078092697 and Φ (n) = 2077999716

Row A pair of keys a b Steps to find

a, b
Steps to
find d

e d

1 230888857 692666569 3 9 90 301
2 1108266515 692666567 3 15 150 301
3 538740667 692666563 3 27 270 301
4 881575637 692666561 3 33 330 301
5 1818249751 519499927 4 8 60 226
6 1688374769 519499925 4 16 120 226
7 1103937349 519499921 4 32 240 226
8 2026049723 519499919 4 40 300 226
9 1962555287 346333283 6 18 90 150

10 1533761695 346333279 6 42 210 150
11 192407381 346333277 6 54 270 150
12 253977743 346333271 6 90 450 150
13 1471916465 173166641 12 24 60 75
14 1760527537 173166637 12 72 180 75
15 757604063 173166635 12 96 240 75
16 1486347019 173166631 12 144 360 75
17 1214830603 159846127 13 65 150 69
18 388197749 159846125 13 91 210 69
19 348755197 159846121 13 143 330 69
20 1561573751 159846119 13 169 390 69
21 1934138197 79923061 26 130 150 34
22 947659211 79923059 26 182 210 34
23 1867293451 79923055 26 286 330 34
24 1961189081 79923053 26 338 390 34

 For example, in 1st Row, l = 30 and
b
a

 = 3, therefore tab = 90. Furthermore, total steps to

find d, td , can be calculated by using the following equation:

 td =
2

id d−
 (4)

 However, di must be computed as first. For the example, di in 1st Row is di =
2078092697 207802 (9 192 97

3

6)− − −   = 692667171.67. In fact, d is always an odd integer

and di is larger than d. Therefore, di can be estimated as 692667171. Then,

3854 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

 td =
692667171 692666

2

569−
 = 301

 The information in this table shows that from the same value of a, the number of steps to
find a and b are larger when b is higher. The reason is that the exponent for the new

decryption equation is from
b

a
. However, for the same value of a, after a and b are found,

the number of steps to find d from the different values of b are same. In addition, it will be
shown in theorem 4.

Theorem 4: From the condition in theorem 1, the total steps to find d from the same value of
a are not changed.

Proof: From td =
2

id d−

 =
2 (1) ()n n b n b

aa

− − − Φ −
−

  

 =
2 () 1n n n

a

− −Φ + 
 

 From this equation, it implies that any values of b do not affect to td. Therefore, the total
steps to find d from the same value of a is not changed.

Example 7: From the value of n in Table 1, td is always equal to
2078092697 2078092697 20779997162 1

3
≈

− − +   301, when a = 3.

 Furthermore, td is very small when a is large. On the other hand, if a is too large, the
solution is not found by using the proposed method. The reason is that 2a which is the
smallest plaintext becomes larger than n.
 Therefore, to avoid an attack by using the proposed method, the parameters should not be
assigned in the condition of theorem 1. In fact, the condition is as follows. If Φ (n) = ad + b,
then both of Φ (n) and b must not be divided by a.
 The next experiment is about the comparison between the proposed method and some
algorithms in special proposed group in order to finish the process. The selected algorithms
to compare with the proposed method consist of:

1) The improvement of FFA which was proposed in [23]
2) The improvement of TDA which was proposed in [18]
3) The improvement of VFactor which was proposed in [28]
4) Bruteforce attack that the exponent must be always an odd number
5) The algorithm for high value of private key which was proposed in [13]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3855

 In fact, the objective of this experiment is to ensure that the proposed method is the best
algorithm when both of a and b are weak, they respond to the proposed method well. In fact,
a = 3 and small value of b are chosen for this experiment. In addition, bits length of n consist
of 128, 256 and 512.
 However, the total loops to find d from g bits of n are usually very large when they are
compared with the others from g – 1 bits of n. Therefore, the exponent of each result is
chosen for the comparison instead of the real result.

Fig. 1. the exponent of result from each algorithm to discover d

 Assuming the total loops to find d are written as the form x x 10y, where x ∈ and y ∈ ,
the information in Fig. 1 is that the exponent, y, is shown at y-axis and three different bits
length of n are represented at x-axis. For example, y = 75 when 128 bits of n is chosen. Then,
it implies that the total loops are about 1075.
 The experimental results show that the proposed method requires the smallest loops of the
computation. The reason is that both of a and b in this experiment are good responses to the
proposed method.
 However, the proposed method becomes an inefficient algorithm when a and b are strong,
b is very large and a is very small. In addition, if a is not a divisor of b or Φ (n) , then d

cannot be recovered by using the proposed method, because the result of
b
a

 is not an

integer. Therefore, the proposed method must be organized in the special proposed group.

5. Conclusion
This research has disclosed the new weakness of RSA. The condition to create the weak

point is that Euler’s totient value, Φ (n) , must be written as the form Φ (n) = ad + b where d
is the private key , and a divides both of Φ (n) and b. The experimental results show

that total steps to recover d is small when a is large and
b

a
 is small. However, if a is too large,

the solution may not be found because the smallest possible value of plaintext is larger than the
modulus. Therefore, to avoid an attack by using the proposed method, a and b should not be in
the condition.

3856 Kritsanapong Somsuk: The new Weakness of RSA and The Algorithm to Solve this Problem

 References
[1] C.Chen, Y. Xiang, J.Du and Z. Cheng, “An Improved Data Cache Timing Attack against RSA

Based on Hidden Markov Model,” Journal of Computers, vol 30, pp. 87 - 95, 2019.
Article (CrossRef Link).

[2] Ritambhara, A. Gupta and M. Jaiswal, “An enhanced AES algorithm using cascading method on
400 bits key size used in enhancing the safety of next generation internet of things (IOT),” in Proc.
of International Conference on Computing, Communication and Automation, pp. 422-427, May 5
– 6, 2017. Article (CrossRef Link).

[3] Y. Yuan, Y. Yang, L. Wu and X. Zhang, “A High Performance Encryption System Based on AES
Algorithm with Novel Hardware Implementation,” in Proc. of IEEE International Conference on
Electron Devices and Solid State Circuits, Shenzhen, pp. 1-2, June 6 – 8, 2018.
Article (CrossRef Link).

[4] X. Zhang, R. Lu , H. Zhang, and C.Xu, “A New Public Key Encryption Scheme based on Layered
Cellular Automata,” KSII Transactions on Internet and Information Systems, vol. 8, no. 10, pp.
3572-3590, 2014. Article (CrossRef Link).

[5] R.L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public key
cryptosystems,” Communications of ACM, vol. 21, pp. 120 – 126, 1978. Article (CrossRef Link) .

[6] L.D. Tran, T.D. Tran, D. Choi and T.D. Nguyen, “RSA-type Algebra Structures,” KSII
Transactions on Internet and Information Systems, vol. 10, no. 6, 2835-2850, 2016.
Article (CrossRef Link).

[7] P. V. V. Kishore, N. Venkatram, C. Sarvya and L. S. S. Reddy, “Medical image watermarking
using RSA encryption in wavelet domain,” in Proc. of International Conference on Networks &
Soft Computing, pp. 258-262, August 19 – 20, 2014. Article (CrossRef Link).

[8] B. J. S. Kumar, A. Nair and V. K. R. Raj, “Hybridization of RSA and AES algorithms for
authentication and confidentiality of medical images,” in Proc. of International Conference on
Communication and Signal Processing, pp. 1057-1060, April 6-8, 2017. Article (CrossRef Link).

[9] M. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE Transactions on Information
Theory, vol. 36, pp. 553-558, 1990. Article (CrossRef Link).

[10] M.E. Wu, C.M. Chen, Y.H. Lin and H.M. Sun, “On the Improvement of Wiener Attack on RSA
with Small Private Exponent,” The Scientific World Journal, pp. 1 – 9, 2014.
Article (CrossRef Link).

[11] D. Boneh, and G. Durfee, “Cryptanalysis of RSA with Private Key d less than N0.292,” Lecture
Notes in Computer Science, vol. 1592, pp. 1 – 11, 1999. Article (CrossRef Link) .

[12] C. Duta, L. Gheorghe and N. Tapus, “Framework for evaluation and comparison of integer
factorization algorithms,” in Proc. of SAI Computing Conference, pp. 1047-1053, July 13-15, 2016.
Article (CrossRef Link) .

[13] K. Somsuk, “The New Equation for RSA's Decryption Process Appropriate with High Private Key
Exponent,” in Proc. of International Computer Science and Engineering Conference, pp. 1-5,
November 15 – 18, 2017. Article (CrossRef Link) .

[14] M.M. Asad, L. Marouf, Q. A. Al-Haija, A. Alshuaibi, “Performance Analysis of 128-bit Modular
Inverse Based Extended Euclidean Using Altera FPGA Kit,” Procedia Computer Science, vol. 160,
pp. 543-548, 2019. Article (CrossRef Link) .

[15] Q. Zhou, C. Tian, H. Zhang, J. Yu, F. Li, “How to securely outsource the extended euclidean
algorithm for large-scale polynomials over finite fields,” Information Sciences, vol. 512, pp.
641-660, 2020. Article (CrossRef Link) .

[16] V. Shende, G. Sudi and M. Kulkarni, “Fast cryptanalysis of RSA encrypted data using a
combination of mathematical and brute force attack in distributed computing environment,” in
Proc. of IEEE International Conference on Power, Control, Signals and Instrumentation
Engineering, pp. 2446-2449, September 21 – 22, 2017. Article (CrossRef Link) .

[17] S. M. Hamdi, S. T. Zuhori, F. Mahmud and B. Pal, “A Compare between Shor's quantum factoring
algorithm and General Number Field Sieve,” in Proc. of International Conference on Electrical
Engineering and Information & Communication Technology, pp. 1-6, April 10 – 12, 2014.
Article (CrossRef Link) .

http://dx.doi.org/doi:10.3966/199115992019023001009
https://doi.org/10.1109/CCAA.2017.8229877
https://doi.org/10.1109/EDSSC.2018.8487056
https://doi.org/10.3837/tiis.2014.10.017
https://doi.org/10.1145/359340.359342
https://doi.org/10.3837/tiis.2016.06.021
https://doi.org/10.1109/CNSC.2014.6906662
https://doi.org/10.1109/ICCSP.2017.8286536
https://doi.org/10.1109/18.54902
https://doi.org/10.1155/2014/650537
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1109/SAI.2016.7556107
https://doi.org/10.1109/ICSEC.2017.8443858
https://doi.org/10.1016/j.procs.2019.11.050
https://doi.org/10.1016/j.ins.2019.10.007
https://doi.org/10.1109/ICPCSI.2017.8392156
https://doi.org/10.1109/ICEEICT.2014.6919115

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3857

[18] S. Murat, “Generalized Trial Division,” International Journal of Contemporary Mathematical
Science, vol. 6(2), pp. 59 – 64, 2011.

[19] N. Lal, A. P. Singh and S. Kumar, “Modified trial division algorithm using KNJ-factorization
method to factorize RSA public key encryption,” in Proc. of International Conference on
Contemporary Computing and Informatics, pp. 992-995, November 27 – 29, 2014.
Article (CrossRef Link) .

[20] K. Somsuk, T. Chiawchanwattana and C. Sanemueang, “Estimating the new Initial Value of Trial
Division Algorithm for Balanced Modulus to Decrease Computation Loops,” in Proc. of
International Joint Conference on Computer Science and Software Engineering, pp. 143-147, July
10 – 12, 2019. Article (CrossRef Link) .

[21] S. Sarnaik, R. Bhakkad and C. Desai, “Comparative study on Integer Factorization
Algorithm-Pollard's RHO and Pollard's P-1,” in Proc. of the International Conference on
Computing for Sustainable Global Development, pp.677 – 679, March 11 - 13, 2015.

[22] G. Xiang and Z. Cui, “The Algebra Homomorphic Encryption Scheme Based on Fermat's Little
Theorem,” in Proc. of International Conference on Communication Systems and Network
Technologies, pp.978 – 981, May 11 – 13, 2012. Article (CrossRef Link) .

[23] K. Somsuk, “The improvement of initial value closer to the target for Fermat’s factorization
algorithm,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 21, no. 7-8, pp.
1573 – 1580, 2018. Article (CrossRef Link) .

[24] M.E. Wu, R. Tso and H.M. Sun, “On the improvement of Fermat factorization using a continued
fraction technique,” Future Generation Computer Systems, vol. 30(1), pp.162 – 168, 2014.
Article (CrossRef Link).

[25] K. Omar and L. Szalay, “Sufficient conditions for factoring a class of large integers,” Journal of
Discrete Mathematical Sciences and Cryptography, vol. 13, pp. 95-103, 2010.
 Article (CrossRef Link).

[26] P. Sharma, A. K. Gupta and A. Vijay, “Notice of Violation of IEEE Publication Principles:
Modified Integer Factorization Algorithm Using V-Factor Method,” in Proc. of International
Conference on Advanced Computing & Communication Technologies, pp. 423-425, January 7 – 8,
2012. Article (CrossRef Link).

[27] K. Somsuk and S. Kasemvilas, “MVFactor: A method to decrease processing time for factorization
algorithm,” in Proc. of International Computer Science and Engineering Conference, pp. 339-342,
September 4 – 6, 2013. Article (CrossRef Link) .

[28] K. Somsuk, “MVFactorV2: An improved integer factorization algorithm to speed up computation
time,” in Proc. of International Computer Science and Engineering Conference, pp. 308-311, July
30 – August 1, 2014. Article (CrossRef Link) .

Kritsanapong Somsuk is an assistant professor of the department of Computer and
Communication Engineering in Faculty of Technology, Udon Thani Rajabhat University,
Udon Thani, Thailand. He obtained his M.Eng. (Computer Engineering) from department of
Computer Engineering in Faculty of Engineering, Khonkaen University, M.Sc. (Computer
Science) from department of Computer Science in Faculty of Science, Khonkaen University
and his Ph.D. (Computer Engineering) from department of Computer Engineering in Faculty
of Engineering, Khonkaen University. The area of research interests include computer
security, cryptography and integer factorization algorithms.

https://doi.org/10.1109/IC3I.2014.7019588
https://doi.org/10.1109/JCSSE.2019.8864218
https://doi.org/10.1109/CSNT.2012.208
https://doi.org/10.1080/09720529.2018.1502737
https://doi.org/10.1016/j.future.2013.06.008
https://doi.org/10.1080/09720502.2010.10700681
https://doi.org/10.1109/ACCT.2012.73
https://doi.org/10.1109/ICSEC.2013.6694805
https://doi.org/10.1109/ICSEC.2014.6978213

