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Abstract 
 

RSA is one of the best well-known public key cryptosystems. This methodology is widely 
used at present because there is not any algorithm which can break this system that has all 
strong parameters within polynomial time. However, it may be easily broken when at least one 
parameter is weak. In fact, many weak parameters are already found and are solved by some 
algorithms. Some examples of weak parameters consist of a small private key, a large private 
key, a small prime factor and a small result of the difference between two prime factors. In this 
paper, the new weakness of RSA is proposed. Assuming Euler’s totient value, Φ (n), can be 
rewritten as Φ (n) = ad + b, where d is the private key and ,a b∈ , if a divides both of Φ (n) 
and b  and the new exponent for the decryption equation is a small integer, this condition is 
assigned as the new weakness for breaking RSA. Firstly, the specific algorithm which is 
created for this weakness directly is proposed. Secondly, two equations are presented to find a, 
b and d. In fact, one of two equations must be implemented to find a and b at first. After that, 
the other equation is chosen to find d. The experimental results show that if this weakness has 
happened and the new exponent is small, original plaintext, m, will be recovered very fast. 
Furthermore, number of steps to recover d are very small when a is large. However, if a is too 
large, d may not be recovered because m which must be always written as m = ha is higher than 
modulus. 
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1. Introduction 

Cryptography [1] is the significant technique to secure the secret information by using 
encryption and decryption processes. It falls into two groups. The first group is called 
symmetric key cryptography. It uses the same key which is called the secret key to encrypt  
original plaintext and decrypt the ciphertext. The advantage is about time to finish processes 
in both sides. Moreover, low computational cost is required. Advanced Encryption Standard 
(AES) [2], [3] is the best algorithm. However, the disadvantage of all algorithms in this 
group is the problem to find the secret channels to exchange the secret key between sender 
and receiver. Later, the other technique which is different from the first group was proposed. 
Asymmetric key cryptography or public key cryptography is the name of this technique. In 
fact, a pair of keys is selected for encryption and decryption processes, both keys are called 
public key and private key. In depth, a public key is always disclosed to interlocutors. On the 
other hand, a private key must be kept secretly by owner. The first algorithm which was born 
in 1976 was discovered by W. Diffie and M.E. Hellman [4]. Although, Diffie and Hellman’ s 
method cannot be chosen to secure the information, it is selected as the secret way to 
exchange a secret key which is transmitted via the insecure channel. In 1978, RSA [5], [6] 
which is another public key cryptography was proposed. It is different from Diffie and 
Hellman’s algorithm because RSA can secure many types of information such as text and 
image [7], [8] by using encryption and decryption processes. In general, at least 1024 bits of 
modulus must be selected to avoid an attack by intruders. Although RSA is one of the best 
algorithms in this group, it may be easily broken whenever at least one hidden parameter is 
weak. For examples, in 1990, M. Wiener [9], [10] presented the method to recover a private 
key by using continued fractions. This algorithm has very high performance when a private 

key is very small especially a key which is less than  
0.251

3
n , where n is modulus. Later, D. 

Boneh and G. Durfee [11] improved Wiener’s technique. In that time, they showed that the 
modified technique is still efficient to recover a private key, although it is bigger than  

0.251

3
n . However, their method becomes incapable when a private key is larger than n0.292. In 

addition, brute force attack is suitable for a small private key, because the initial value for the 
investigation is the smallest odd integer. Furthermore, factoring [12] the modulus as prime 
numbers is another methodology to find a private key, because Euler’s totient value is 
disclosed. Most of algorithms can finish the process very fast when the characteristic of 
some prime factors is weak. In 2017, the technique [13] to speed up RSA’s decryption 
process with a large private key was proposed by using the modified decryption equation. 
The inversion of ciphertext modulo n is chosen as the base instead of the ciphertext and the 
private key is replaced by the new integer. In fact, this method is suitable for only the large 
private key, because the size of the new exponent is opposite of the private key. On the other 
hand, this technique may be chosen to attack RSA by using brute force attack whenever a 
private key is too large. It affects to the size of the new exponent which is too small. 
Therefore, it is an easy way for intruders to break RSA by using the equation with the base 
as inversion of ciphertext modulo n and the random exponent.   
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   The aim of this paper is to propose the new idea to break RSA. Furthermore, the weak 

parameter for this method occurs when a private key, d, can be rewritten as 
( )n b

a

Φ −
, where 

, Φ (n) is Euler’s totient value, a divides b (a|b) and a divides Φ (n) (a|Φ (n)). In 
fact, if d is from the above condition, a and b are easily disclosed.  In contrast, d will not be 
discovered by using the proposed method in the case that it cannot be written as this form.    

The rest of the paper is organized as follows. In section 2, the related works are mentioned. 
It consists of the overview of RSA and the techniques to recover d. The proposed method will 
be discussed in Section 3. In section 4, the experimental results are presented. Finally, the last 
section is about the conclusion of this research. 

2. Related Work 
   In this section, the conceptual idea of RSA and the ways to recover d by intruders are 
mentioned.  In fact, all algorithms which are in the special proposed group may break RSA 
in polynomial time when at least one parameter is weak. 
 
2.1 RSA 
 
   RSA [5], [6] is one of public key cryptosystems to protect the secret information by using 
data encryption. Because of high security, when n is assigned at least 1024 bits, RSA is still 
widely used at present. In general, there are three processes to secure the plaintext by using 
RSA. First step is the key generation process. The beginning of this process is the generating 
two large prime numbers, p and q (p < q), randomly. The second step is to compute n = p*q 
and Φ (n) = (p – 1)*(q – 1). The next step is to choose a public key, e, from the following 
condition: 1 < e < Φ (n) and the greatest common divisor between e and Φ (n) must be 
equal to 1, gcd(e, Φ (n)) = 1. Computing d, from e*d mod Φ (n) = 1, is performed in the last 
step. In fact, Extended Euclidean Algorithm or the improved methods [14], [15] are the 
method to calculate d. The second process is the encryption process. It will convert the 
original plaintext, m, as unreadable message or ciphertext, c, from the equation: c = me mod 
n. However, m will be recovered by using the decryption equation: m = cd mod n in the last 
process. 
  In general, d which is always kept secretly by owner is the intruders’ target. However, there 
is not any efficient algorithm to recover d for breaking RSA within the polynomial time 
whenever at least 1024 bits of n is chosen and all secreted parameters are very difficult to be 
calculated.   
  On the other hand, RSA may be easily attacked when at least one of the parameters 
becomes weak. In the sections 2.2 – 2.5, the algorithms for recovering d are shown when at 
least one of hidden parameters which is weak is occured. All of them are suitable for the 
different characteristics of the weak parameters.  
 
2.2 Wiener’s attack 
 
   Assuming, the communication devices in decryption part are a low power electronic 
equipment, these divices are not suitable to be selected as the machine to decrypt the 
ciphertext. The reason is that d is usually assigned very large. Therefore, one of the best 
solutions is to choose the new private key that the size is smaller than the old one. However, 
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in 1990, M. Wiener [9], [10] proposed the efficient method to recover a small private key. 

His method has very high performance when d is smaller than 
0.251

3
n . In fact, if this situation 

is occured, it can be computed by searching 
k

d
 which is the convergence of 

e

n
. Moreover, 

after d is disclosed, p and q are also found. Therefore, a small private key is considered as 
one of the weak parameters. Furthermore, D. Boneh and G. Durfee [10] improved Wiener’s 
algorithm and the result from the experiment reported that it can recover d, although d is still 

larger than 
0.251

3
n . In fact, to avoid an attack by using Boneh and Durfee’s method, d should 

be larger than n0.292. 
 
2.3 Brute force attack 
 
   Brute force attack [16] is the simplest method to explore d. The main process is to find an 
integer which is equal to d. In general, the first initial value which is selected as the exponent 
of modular exponentiation is begun as 3 and it is increased by two whenever the result from 
decryption equation is not equal to m until the target is found. In fact, the reason that the 
exponent must be increased by two is to skip all even numbers out of the computation, 
because d is always an odd number. Therefore, it implies that if d is a small integer, the 
process can be finished very fast by using brute force attack.  
 
2.4 High value of Private key 
 
   After Wiener’s attack and some improved methods were proposed, d must be assigned 
very large to increase the security. However, it affects to get the result directly, because the 
process becomes slow. In 2017, the improvement of decryption equation [13] was proposed 
to speed up RSA’s decryption process. Considering at the modified equation, the inversion 
of ciphertext modulo n , c-1 mod n, is selected as the base instead of c and d is replaced by x =  
Φ (n) – d. Therefore, the equation to recover m is changed as m = (c-1)x mod n. In fact, this 
method is suitable for a high private key because x becomes small. Therefore, if d is a large 
integer, m can be recovered very fast by using the above equation. In contrast, this equation 
may become the weak point for attackers to solve this problem. Assuming, d is a large 
integer, x becomes small, d can be found easily by using brute force attack with c-1 mod n as 
the base. Therefore, the large private key may become one of the weak parameters.    
 
2.5 Integer Factorization Algorithms 
 
   Integer Factorization is another strategy to retrieve d after p and q are found. It is 
distinguished as two groups. For the first group, it is called the general purposed group. All 
algorithms are based on only size of n. Number Field Sieve (NFS) [17] which is one of 
efficient algorithms in this group is considered as the best integer factorization algorithm. In 
fact, it has very high performance when n is large. However, if n is higher than 1024 bits, 
then NFS becomes an inefficient algorithm to find two prime factors. The second group is 
called the special purposed group. In fact, the performance of each algorithm in this group is 
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based on the different characteristics of the weak parameters. Although, NFS is considered 
as the best algorithm, it is not guaranteed as the fastest algorithm for all values of n. In fact, 
if there is at least one weak parameter that responds well to the algorithm in special purposed 
group, then it may factor n faster than NFS. The examples of algorithms in special purposed 
group are shown as follows: 
 
1) Trial Division Algorithm 
   Trial division algorithm (TDA) [18], [19] is the simplest integer factorization algorithm 
and it is divided into two techniques. The concept of this algorithm is to find the correct 
divisor of n. First, the divisor is begun as 3 and it is increased whenever the result is not the 
target answer. In addition, only odd numbers or prime numbers are chosen as the divisor to 
decrease time. With the reason above, it implies that this technique is suitable for a small 
prime factor. Hence, it is considered as another weak point to break RSA. However, the 

maximum odd integer which is less than n  is chosen as the first divisor instead of 3 for the 
second method [20]. In addition, this number will be decreased whenever it is not the real 

prime factor. Then, p which is very close to n  is the weak parameter for the second 
method. 
 
2) Pollard’s p-1 
   Pollard’s p-1 [21] is one of the strategies in special purposed group. It was discovered by J. 
Pollard in 1974. The main idea of this algorithm is improved from Fermat’s little theorem 
[22]. In addition, this algorithm can recover both of p and q very fast whenever all prime 
factors of p – 1 or q – 1 are small. In general, all of them are examined as the weak point of 
Pollard’s p - 1. 
 
3) Fermat’s Factorization 
   Fermat’s Factorization algorithm (FFA) is the factoring algorithm which was discovered 
by Pirre der Fermat in 1600 [21]. During that time, he found that the equation of n which is 
the multiplication between p and q can be rewritten as the difference between two perfect 
square numbers. In addition, the algorithm to recover both of them was proposed in that 
time. In general, Fermat’s equation is very suitable for the same size of p and q especially the 
result of q – p is very close to 0. Furthermore, many improvement algorithms were presented 
to leave some unrelated loops out of the computation such as [24], [25]. 
 
4) VFactor 
    VFactor [26] is the integer factorization algorithm that was presented by P. Sharma et. al. in 
2012. It has very high performance when q – p is close to 0, the characteristics of p and q are 
similar to FFA. That means, the weak point is that p and q are very close to each others. To 
implement VFactor, two odd integers are chosen as the initial values. One is the maximum 
integer which is less than n  and the other is the minimum integer which is larger than n . 
The main process is about the multiplication between these integers. If the result is equal to 
n, both of them are certainly prime factors. On the other hand, one of them must be changed 
until the target is found. In addition, the improvement of VFactor [27], [28] were proposed to 
skip some loops to decrease computation time. 
   Therefore, all algorithms which are in the special proposed group and are mentioned in this 
section can recover d very fast when one of  hidden parameters is weak. 
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3. The Proposed Method 
    In this paper, the new methodology to recover m  without disclosing d and the new 
algorithm to find d are proposed. Assuming Φ (n) = ad + b, where ,a b∈ , a | b and a 

|Φ (n)  , if a is not too large and the result of 
b
a

  is a small integer, then both of them 

become the new weakness of RSA which is very easy to be solved by using the proposed 
method. Furthermore, after a and b are disclosed, they can be selected to estimate the new 
initial value of d.  
 
Theorem 1: Assigning , ,a b h∈  and Φ (n) = ad + b, where a | b and a | Φ (n), if m = ha, 

then m can be recovered by using the following equation: m = 1( )
b
ac− mod n  

Proof: 
 From,    ( )ncΦ  mod n = cad + b mod n 
                                  = (cd)a * cb mod n 

From Euler’s Theorem, ( )ncΦ  mod n = 1, when c is relatively prime to n, then 
 

    (cd)a * cb mod n = 1 
 That means,  (cd)a *c-1 *cb mod n = c-1 mod n 
 Or,   (cd)a *(c-1)b*cb mod n = (c-1)b mod n 
    cda *c-b*cb mod n = (c-1)b mod n 
 Because,  c-b*cb mod n = 1 
 Then,   cda mod n = (c-1)b mod n     

 Because m = ha, it implies that the result of 
1

( )ea ah  is always an integer. Therefore, 

   
1
ac  mod n = 

1

( )e am  mod n 

         = ( )
1

ae ah mod n  
          = he mod n 

Because a  | b,  the result of 
b
a

is always an integer. 

Therefore,  

    
1

( )ad ac mod n = 
1

1(( ) )b ac− mod n 

Or,           cd mod n = 1( )
b
ac− mod n   

 
Therefore, 

    cd mod n = 1( )
b
ac− mod n    (1) 

 
   In fact, a and b must have the same type, both of them are either odd numbers or even 
numbers. The proof will be shown in theorem 2. Furthermore, a must be the divisor of 
Φ (n). In depth, if it is not in the condition, there is certainly the remainder from result of d = 
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( )n b
a

Φ −
that is impossible. 

 
Theorem 2: a and b must be the same type, both of them are either odd numbers or even 
numbers. 
Proof: First, assuming the type of a is different from b, there are two cases as follows: 

Case 1: a is an even number and b is an odd number 
Assuming a = 2x, b = 2y + 1 and d = 2z + 1, then 
   ad + b = (2x)*(2z + 1) + 2y + 1 
              = 4xz + 2x + 2y + 1 
              = 2(2xz + x + y) + 1 
              = 2u + 1, where u = 2xz + x + y 
 

 Then, ad + b is an odd number. However, Φ (n) is always an even number. 
Therefore, it becomes the contradiction. 

Case 2: a is an odd number and b is an even number 
Assuming a = 2x + 1, b = 2y and d = 2z + 1, then 
   ad + b = (2x + 1)*(2z + 1) + 2y  
              = 4xz + 2x + 2z + 1 + 2y 
              = 2(2xz + x + y + z) + 1 
              = 2u + 1, where u = 2xz + x + y + z 
 
The same reason with case 1 that Φ (n) is always an even number. Therefore, the 

contradiction is occured. 
 From case 1 and case 2, the conclusion is that the contradiction will be happened 
whenever a and b are the different type.  
 Next, the similar type of a and b is assummed, there are also two cases as follows: 

 
Case 3: a and b are an odd number 
Assuming a = 2x + 1, b = 2y + 1 and d = 2z + 1, then 
   ad + b = (2x + 1)*(2z + 1) + 2y + 1 
              = 4xz + 2x + 2z + 1 + 2y + 1 
              = 2(2xz + x + y + z + 1)  
              = 2u, where u = 2xz + x + y + z + 1 

 
Case 4: a and b are an even number 
Assuming a = 2x, b = 2y and d = 2z + 1, then 
   ad + b = (2x)*(2z + 1) + 2y 
              = 4xz + 2x + 2y  
              = 2(2xz + x + y)  
              = 2u, where u = 2xz + x + y 
 
The information from case 3 and case 4 shows that the result of ad + b is always an 

even number. Then, it is possible to be Φ (n). Therefore, both of a and b must be the same 
type.        
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Example 1: Assuming n = 4624614191 (46279*99929), Φ (n) = 4624467984, e = 
1761702089 and d = 1541489321, encrypting m = 8 (23) , 27 (33) and 64 (43) and recovering 
all of them. 
Sol: 
Encryption Process: 
 Encrypting m1 = 8: c1 = 81761702089 mod 4624614191 = 4582115474 
 Encrypting m2 = 27: c2 = 271761702089 mod 4624614191 = 4250185739   
 Encrypting m3 = 64: c3 = 641761702089 mod 4624614191 = 2498965230  
Decryption Process: 
 Because of 4624467984 = 3*1541489321 + 21,  3 | 21 and 3 | 4624467984, then a = 

3, b = 21 and the exponent is 
21
3

= 7. 

 Decrypting c1 = 4582115474: because of 4063456358 * 4582115474 mod 
4624614191 = 1, then m1 = 40634563587 mod 4624614191= 8 
 Decrypting c2 = 4250185739: because of 4038271146* 4250185739 mod 
4624614191 = 1, then m2 = 40382711467 mod 4624614191= 27 

Decrypting c3 = 2498965230: because of 3200318111* 2498965230 mod 
4624614191 = 1, then m3 = 32003181117 mod 4624614191= 64 
 
Example 2: Assuming n = 4624614191 (46279*99929), Φ (n) = 4624467984, e = 
105101545 and d = 1156116985, encrypting m = 16 (24), 81 (34) and 256 (44) and recovering 
all of them. 
Sol: 
Encryption Process: 
 Encrypting m1 = 16: c1 = 16105101545 mod 4624614191 = 3695640335 
 Encrypting m2 = 81: c2 = 81105101545 mod 4624614191 = 827143163   
 Encrypting m3 = 256: c3 = 256 105101545 mod 4624614191 = 1504158843 
Decryption Process: 
 Because of 4624467984 = 4*1156116985 + 44, 4 | 44 and 4 | 4624467984, then a = 

4, b = 44 and the exponent is 
4

44
= 11. 

 Decrypting c1 = 3695640335: because of 4330254396 * 3695640335 mod 
4624614191 = 1, then m1 = 433025439611 mod 4624614191= 16 
 Decrypting c2 = 827143163: because of 2428627615* 827143163 mod 4624614191 
= 1, then  m2 = 242862761511 mod 4624614191= 27 

Decrypting c3 = 1504158843: because of 1756256207* 1504158843 mod 
4624614191 = 1, then m3 = 175625620711 mod 4624614191= 256 
 
 The information from example 1 and example 2 shows that the new equation in the 
theorem 1 can be chosen to recover m. However, the correct result will be occurred 
whenever m must be generated from ha. The example 3 shows that the result becomes an 
incorrect answer when the pattern of m cannot be written as ha. 
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Example 3: From n, Φ (n), e and d which are in example 1, encrypting m = 11 and 
recovering this value. 
Sol: 
Encryption Process: 
 Encrypting m = 11: c = 111761702089 mod 4624614191 = 4348997977 
Decryption Process: 

Decrypting c = 4348997977: because of 2334698442 * 4348997977 mod 
4624614191 = 1, then m' = 23346984427 mod 4624614191= 182070649  it is the wrong 
answer 
 
 In fact, the decrytion process in example 3 cannot recover m = 11 because 11 cannot 
be written as h3.  
 Nevertheless, some values which are not written as the form ha can be recovered by 
using the proposed equation, it is shown in example 4. 
 
Example 4: From n, Φ (n), e and d which are in example 1, encrypting m = 15 and 
recovering this value. 
Sol: 
Encryption Process: 
 Encrypting m = 15: c = 151761702089 mod 4624614191 = 4542134671 
Decryption Process: 

Decrypting c = 4542134671: because of 1511425060 * 4542134671 mod 
4624614191 = 1, then m = 15114250607 mod 4624614191= 15  
 
 From the information in the examples above, it implies that if m = ha, it can be 
always recovered by using the proposed equation. On the other hand, the result from 
decryption process may be the wrong answer when m ≠ ha. 
 

Assuming, the form of d is in the condition of this research,  the concept to find i = 
b
a

is as follows. First, it is the process to assign i = 1 as the initial exponent for the proposed 

equation. The next process is to select m which is a small integer to find some possible 
plaintexts which are generated from m. In fact, all of them are m, m2, m3, ,ma, ,ml where 
ml < n < ml+1. Next, all chosen plaintexts are encrypted. The last process is to decrypt all 
ciphertexts by using i as the key and the inversion of ciphertext modulo n as the base. If there 

is the matching result, thoroughly rechecking with the other values to ensure that i = 
b
a

. On 

the other hand, i will be increased to find the correct key whenever there is no matching 
result. 

 
Example 5: Assuming n = 290831 (863*337), and e = 203815 are disclosed, find i, 
Sol:   

First, choosing m = 3 
 Because m11 = 177147 < n < m12 = 531441, therefore, m1 = 3, m2 = 32, m3 = 33, , 
m11= 311 are chosen as the plaintexts for the implementation. The results are m1=3, m2=9, 
m3=27, m4=81, m5=243, m6=729, m7=2187, m8=6561, m9=19683, m10=59049, m11=177147 
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 The next process is to find c1 = 1
em mod n = 255559, c2 = 2

em  mod n = 229797, c3 = 

3
em  mod n = 60186, c4 = 4

em  mod n = 185708, c5 = 5
em  mod n = 94037, c6 = 6

em  mod n = 

54491, c7 = 7
em  mod n = 95527, c8 = 8

em  mod n = 139622, c9 = 9
em  mod n = 184970, c10 = 

10
em  mod n = 240814, c11 = 11

em  mod n = 18778.  

 Then computing 1
1c− mod n = 22749 , 1

2c− mod n = 128652, 1
3c− mod n = 71995, 

1
4c− mod n  = 144894, 1

5c− mod n = 205883, 1
6c− mod n =  89943, 1

7c− mod n = 117222, 1
8c− mod 

n = 53839, 1
9c− mod n = 94070, 1

10c− mod n = 63932, 1
11c− mod n = 234068 

 Assigning j ∈ where j = 1, 2, 3, , 11, the next process is to find the exponent i 
which is the correct result, the initial value is 1, 
Loop 1 (i = 1): Computing tj = 1 1( )jc− mod n, that means tj = 1( )jc− mod n, however there is 
no tj which is matched to mj. 
Loop 2 (i = 2): Computing tj = 1 2( )jc− mod n, then the results are t1 = 128652, t2 = 144894, t3 
= 89943, t4 = 53839, t5 = 63932, t6 = 278984, t7 = 105027, t8 = 216175, t9 = 50063, t10 = 
252581, t11 = 212351, there is no tj which is matched to mj. 
Loop 3 (i = 3): Computing tj = 1 3( )jc− mod n, then the results are t1 = 71995, t2 = 89943, t3 = 
94070, t4 = 278984, t5 =  82558, t6 = 50063, t7 = 17102, t8 = 170867, t9 = 27, t10 = 198879, t11 
= 101813, there is no tj which is matched to mj. 
Loop 4 (i = 4): Computing tj = 1 4( )jc− mod n, then the results are t1 = 144894, t2 = 53839, t3 
= 278984, t4 = 216175, t5 =  252581, t6 = 170867, t7 = 32561, t8 = 33052, t9 = 213242, t10 = 
182570, t11 = 182313, there is no tj which is matched to mj. 
Loop 5 (i = 5): Computing tj = 1 5( )jc− mod n, then the results are t1 =  205883, t2 = 63932, t3 
= 82558, t4 = 252581, t5 =  97068, t6 = 198879, t7 = 290329, t8 = 182570, t9 = 188377, t10 = 
144717, t11 = 6654, there is no tj which is matched to mj. 
Loop 6 (i = 6): Computing tj = 1 6( )jc− mod n, then the results are t1 =  89943, t2 = 278984, t3 
= 50063, t4 = 170867, t5 =  198879, t6 = 213242, t7 = 193249, t8 = 170923, t9 = 729, t10 = 
131472, t11 = 88467, there is no tj which is matched to mj. 
Loop 7 (i = 7): Computing tj = 1 7( )jc− mod n, then the results are t1 =  117222, t2 = 105027, t3 
= 17102, t4 = 32561, t5 =  290329, t6 = 193249, t7 = 207688, t8 = 139726, t9 = 231745, t10 = 
252004, t11 = 126556, there is no tj which is matched to mj. 
Loop 8 (i = 8): Computing tj = 1 8( )jc− mod n, then the results are t1 =  53839, t2 = 216175, t3 
= 170867, t4 = 33052, t5 =  182570, t6 = 170923, t7 = 139726, t8 = 73468, t9 = 142052, t10 = 
245652, t11 = 118303, there is no tj which is matched to mj. 
Loop 9 (i = 9): Computing tj = 1 9( )jc− mod n, then the results are t1 = 94070, t2 = 50063, t3 = 
27 = m3, t4 = 213242, t5 =  188377, t6 = 729 = m6, t7 = 231745, t8 = 142052, t9 = 19683 = m9, 
t10 = 149664, t11 = 54601  
 From all results in 9th Loop, the result of a may be equal to 3, 6 or 9. In fact, both of 
m6 and m9 can be rewritten as the form h3 as follows: m6 = m3*m3 = (m2)3 and m9 = m3*m3*m3 
= (m3)3. Therefore, it implies that a is equal to 3 and then b = 3*9 = 27. However, to ensure a 
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= 3 is the correct result, the other plaintexts should be selected to verify. 
 Assuming '

1m = 125 (53) and '
2m = 1331 (113) are chosen, then 

Encryption Process: 
 Encrypting '

1m  = 125: '
1c  = 125203815 mod  290831  = 194710 

 Encrypting '
2m  = 1331: '

2c  = 1331203815 mod  290831  = 124812 
Decryption Process: 
 Decrypting '

1c  = 194710: because 55503* 194710 mod 290831 = 1, then 

   '
1m  = 555039 mod 4624614191= 125 

 Decrypting '
2c  = 124812: because 181922* 124812 mod 290831 = 1, then 

   '
2m  = 1819229 mod 4624614191= 1331 

 
 Therefore, i = 9 with a = 3, b = 27 
 In addition, the total loops to find a and b are 11 (number of c-1 mod n) * 9 (number 
of loops) = 99. 
 
 Furthermore, if a and b are disclosed, the initial integer can be estimated to decrease 
loops. After this integer is found, d can be recovered by using brute force attack. 
 

Theorem 3:  Assuming a, b are disclosed, then 
2 ( 1)n n b

d
a

− − −
≤

    

Proof: 
 From,   ad + b = Φ (n) 
               = (p – 1)(q – 1) 
               = n – (p + q) +1  
 
 Because, p + q 2 n ≥   , 

ad + b ≤  n - 2 n   +1 

    ad ≤ 2 ( 1)n n b− − −    

 Then,   d ≤
2 ( 1)n n b

a

− − −    

 Therefore,  d ≤
2 ( 1)n n b

a

− − −        

 
 Therefore,  the scope to find d is narrowed by using the following equation, 
 

d ≤
2 ( 1)n n b

a

− − −        (2) 
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Assigning di = 
2 ( 1)n n b

a

− − −   , it can be chosen as the initial value to find d and 

it is always decreased by two (d is always an odd number) whenever the decrypted result is 
still incorrect. 
 
Example 6: From the solution in example 5, the aim of this example is to find the initial 
value by using the equation in theorem 3 
Sol:   

 From,   di = 
2 ( 1)n n b

a

− − −    

        = 
290831 2908312 (27 1)

3

− − −    

        = 96575 
  
 In fact, the real value of d = 96535. Then, the distance between di and d is only 
96575 – 96535 = 40. Therefore, there are only 20 loops of the computation to find the target. 
On the other hand, if the process is implemented by using traditional brute force attack 
choosing do = 3 as the initial exponent, the loops are 48266. In depth, it is very higher than 
the proposed equation. 

4. Experimental Results 
   The aim of this section is to ensure the hypothesis that the proposed method can recover 

both of m and d very fast when a is large, but 2a is still less than n, and  
b

a
 is small. Many 

pairs of e and d from the same value of n are chosen for the experiment. However, all values 
of d must generate a and b in the condition. In addition, 32 bits of n is chosen randomly. In 
fact, n in this experiment is 2078092697 (55619 * 37363) and thenΦ (n) is 2077999716. In 
addition, m = 2 is selected as the base of original plaintext because it is the smallest plaintext. 
Because of  230 = 1073741824 < n < 231 = 2147483648, then the maximum value of a is 30. 
Despites of 2077999716 = 22*3*13*479*27809. Therefore, there are 6 possible values of a 
consist of 2, 3, 4 (2*2), 6 (2 * 3), 12 (2 * 2 * 3), 13 and 26 (2 *13). 
   From Table 1, Number of steps to find a, b can be estimated from the following equation:
    

     tab = * bl
a

     (3) 

  
Where, tab is represented as number of steps to find a, b 

 l is number of all possible  plaintexts which are from m = m1, m2, , ml.  
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Table 1. Number of steps to find a, b and d  when n = 2078092697 and Φ (n) = 2077999716 
 
Row A pair of keys a b Steps to find 

a, b 
Steps to 
find d 

e d 

1 230888857 692666569 3 9 90 301 
2 1108266515 692666567 3 15 150 301 
3 538740667 692666563 3 27 270 301 
4 881575637 692666561 3 33 330 301 
5 1818249751 519499927 4 8 60 226 
6 1688374769 519499925 4 16 120 226 
7 1103937349 519499921 4 32 240 226 
8 2026049723 519499919 4 40 300 226 
9 1962555287 346333283 6 18 90 150 

10 1533761695 346333279 6 42 210 150 
11 192407381 346333277 6 54 270 150 
12 253977743 346333271 6 90 450 150 
13 1471916465 173166641 12 24 60 75 
14 1760527537 173166637 12 72 180 75 
15 757604063 173166635 12 96 240 75 
16 1486347019 173166631 12 144 360 75 
17 1214830603 159846127 13 65 150 69 
18 388197749 159846125 13 91 210 69 
19 348755197 159846121 13 143 330 69 
20 1561573751 159846119 13 169 390 69 
21 1934138197 79923061 26 130 150 34 
22 947659211 79923059 26 182 210 34 
23 1867293451 79923055 26 286 330 34 
24 1961189081 79923053 26 338 390 34 

 

   For example, in 1st Row, l = 30 and 
b
a

 = 3, therefore tab = 90. Furthermore, total steps to 

find d, td , can be calculated by using the following equation: 
    

     td = 
2

id d−
     (4) 

 
   However, di must be computed as first. For the example, di in 1st Row is di = 
2078092697 207802 (9 192 97

3

6 )− − −    = 692667171.67. In fact, d is always an odd integer 

and di is larger than d. Therefore, di can be estimated as 692667171. Then, 
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   td = 
692667171 692666

2

569−
 = 301 

 
   The information in this table shows that from the same value of a, the number of steps to 
find a and b are larger when b is higher. The reason is that the exponent for the new 

decryption equation is from 
b

a
. However, for the same value of a, after a and b are found, 

the number of steps to find d from the different values of b are same. In addition, it will be 
shown in theorem 4. 
 
Theorem 4: From the condition in theorem 1, the total steps to find d from the same value of 
a are not changed. 

Proof: From   td =
2

id d−
 

        = 
2 ( 1) ( )n n b n b

aa

− − − Φ −
−

    

        = 
2 ( ) 1n n n

a

− −Φ + 
   

 
   From this equation, it implies that any values of b do not affect to td. Therefore, the total 
steps to find d from the same value of a is not changed.  
 
 
Example 7: From the value of n in Table 1, td is always equal to 
2078092697 2078092697 20779997162 1

3
≈

− − +   301, when a = 3. 

 
   Furthermore, td is very small when a is large. On the other hand, if a is too large, the 
solution is not found by using the proposed method.  The reason is that 2a which is the 
smallest plaintext becomes larger than n. 
   Therefore, to avoid an attack by using the proposed method, the parameters should not be 
assigned in the condition of theorem 1. In fact, the condition is as follows. If Φ (n) = ad + b, 
then both of Φ (n) and b must not be divided by a. 
   The next experiment is about the comparison between the proposed method and some 
algorithms in special proposed group in order to finish the process. The selected algorithms 
to compare with the proposed method consist of: 
 

1) The improvement of FFA which was proposed in [23] 
2) The improvement of TDA which was proposed in [18] 
3) The improvement of VFactor which was proposed in [28] 
4) Bruteforce attack that the exponent must be always an odd number 
5) The algorithm for high value of private key which was proposed in [13] 
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   In fact, the objective of this experiment is to ensure that the proposed method is the best 
algorithm when both of a and b are weak, they respond to the proposed method well. In fact, 
a = 3 and small value of b are chosen for this experiment. In addition, bits length of n consist 
of 128, 256 and 512. 
   However, the total loops to find d from g bits of n are usually very large when they are 
compared with the others from g – 1 bits of n. Therefore, the exponent of each result is 
chosen for the comparison instead of the real result. 
 

 
Fig. 1. the exponent of result from each algorithm to discover d 

 
   Assuming the total loops to find d are written as the form x x 10y, where x ∈ and y ∈ , 
the information in Fig. 1 is that the exponent, y, is shown at y-axis and three different bits 
length of n are represented at x-axis. For example, y = 75 when 128 bits of n is chosen. Then, 
it implies that the total loops are about 1075.  
   The experimental results show that the proposed method requires the smallest loops of the 
computation. The reason is that both of a and b in this experiment are good responses to the 
proposed method.   
   However, the proposed method becomes an inefficient algorithm when a and b are strong, 
b is very large and a is very small. In addition, if a is not a divisor of b or Φ (n) , then d 

cannot be recovered by using the proposed method, because the result of 
b
a

 is not an 

integer. Therefore, the proposed method must be organized in the special proposed group.  

5. Conclusion 
This research has disclosed the new weakness of RSA. The condition to create the weak 

point is that Euler’s totient value, Φ (n) , must be written as the form Φ (n) = ad + b where d 
is the private key ,  and a divides both of Φ (n) and b. The experimental results show 

that total steps to recover d is small when a is large and 
b

a
 is small. However, if a is too large, 

the solution may not be found because the smallest possible value of plaintext is larger than the 
modulus. Therefore, to avoid an attack by using the proposed method, a and b should not be in 
the condition. 
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